

INDUSTRIAL AND COMMERCIAL COIL PRODUCTS

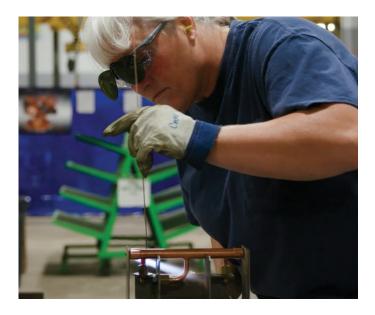
THE INDUSTRY LEADER IN RELIABLE HEAT TRANSFER PRODUCTS SINCE 1925

Marlo History

Since 1925, Marlo Coil has manufactured quality heat transfer, refrigeration and air handling equipment for industrial, commercial, utility and marine markets, including the US Navy. Our custom engineered heat transfer solutions are used to cool, heat and dehumidify air streams for both processes and building comfort. Centrally located near St. Louis, Missouri, our 180,000 square foot facility manufactures quality products that provide years of dependable performance, even in the most demanding conditions.

Custom Manufacturing

At Marlo, every product is "engineered-to-order" – never "off-the-shelf". We custom build each product to meet the exact needs of its application. That means the customer can choose the specific features and performance needed, including things like unusual sizes, unique materials, extra durability or other special features. There is virtually no limit to the amount of customization we can build into any of our many products.


Expert Engineering

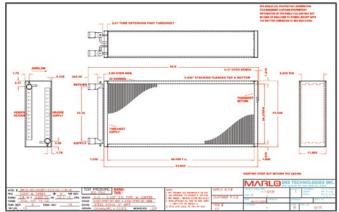
Marlo engineers are experts in designing coils for all types of applications, from common comfort heating and cooling to complex thermal processes. Heat recovery, vapor recovery, process heating and moisture removal are common applications for Marlo designed coils. We use the latest design and analysis technology, including Computational Fluid Dynamics, to accurately predict air and water flow patterns through the coil, as well as to calculate pressure drop and heat transfer values.

Quality Production

Our products are efficiently manufactured in our state-of-the-art facility, by highly skilled and experienced craftsmen, using only top-quality materials. We also utilize lean manufacturing practices and multiple quality assurance programs. We can produce coils that comply with all standards organizations and quality systems, including ASME, ASHRAE, AHRI, PED, CRN, ISO and others. If you have special requirements, just contact us or your Marlo representative.

Stringent Testing

All of our coils are thoroughly tested prior to shipment using high pneumatic pressure while the coil is submerged in water. Alternative test methods and air side testing are also available.



QuickShip Program

We offer 5-Day, 10-Day and 15-Day QuickShip service, which guarantees your coils will ship from our factory within 5 to 15 days of receiving your order. 5-Day QuickShip is available on all of our standard steam coils (S, V, D, H) and water coils (W). 10-Day and 15-Day QuickShip is available for those, as well as the vast majority of our other coils. Contact us or your Marlo representative for details.

MarloMetrics

Our proprietary coil selection software makes ordering fast and easy. MarloMetrics is an easy-to-use tool that allows Marlo representatives to quickly customize and quote any of our products. The software also offers instant submittal package generation, including performance specifications, pricing, general arrangement drawings and more.

FLUID, REFRIGERANT AND STEAM COILS

Fluid Coils

Fluid coils typically feature multiple row coils with various circuit options. Full-size return bends and properly sized headers are utilized to ensure uniform flow and minimized pressure loss. Fluid coils are available for chilled water, hot water, glycol and special fluid applications.

W Coils Standard water coils typically consisting of multiple rows and circuits.

Similar to standard water coils, P coils feature a pitched core within the casing and auxiliary drain headers to ensure fast and complete drainage of the coil — eliminating

the likelihood of freeze

damage.

Cleanable Coils

Fluid coils feature removable brass end caps on the tube ends that allow access to the interior of the coil for cleaning. These coils are typically used in environments where sediment or foreign materials may accumulate within the coil. Individual tube access allows for simple inspection and isolated cleaning. These coils can be ASME "U" stamped for extreme environments.

J Coils

Plugs located on the supply header end of the coil.

X Coils

Plugs located opposite the header end of the coil.

K Coils

Plugs on both ends of the coil to allow straight-through cleaning.

Coils with Removable Box Headers

Fluid coils featuring removable box headers allow access to the interior of the coil for cleaning. The removable box is ideal for high-sediment fluid environments, such as river or lake water. Removing the headers exposes all of the tubes for easy inspection or cleaning. For higher pressure applications see our J, X and K coils.

Q Coils

A removable box header is located on the supply header end of the coil.

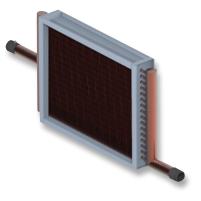
Y Coils

A removable box header is located on the fluid-return end of the coil.

R Coils

Removable box headers are located on both ends of the coil to allow straight-through cleaning.

Standard Steam Coils


Standard steam coils feature a continuous straight-through steam path with opposite end supply and condensate headers. Cores are pitched within the casing toward the condensate header to promote condensate removal. For low or high-pressure steam applications, these coils are available in several combinations of materials.

S Coils

Steam coil utilizing 0.625" diameter tubes and a straight through steam path.

V Coils

Steam coil utilizing 1.0" diameter tubes and a straight through steam path.

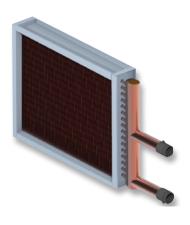
Refrigerant Coils

Our refrigerant or air conditioning coils include evaporator and condenser coils. Direct expansion evaporator coils feature distributors, capillary tubes, suction headers, and optional thermal expansion valves. Condenser coils feature various circuiting options, including sub-cooling circuits. Care is taken to ensure the interior of our refrigeration coils remains contaminant free during production and testing, including a nitrogen charge prior to shipment.

E Coils
Direct expansion
evaporator coils for use
with most refrigerants.

C Coils Condenser coils for use with most refrigerants.

Distributing Steam Coils


These coils have smaller-diameter tubes within larger tubes, which distribute the steam uniformly across the coil, eliminating cold spots. As a result, these coils are often referred to as "freeze proof" coils. Cores are pitched within the casing toward the header to promote condensate removal. They are available in several combinations of materials, for low-or high-pressure steam applications.

D Coils

Features 0.625" diameter outer tubes with 0.375" inner steam distributing tube.

H Coils

Features 1.0" diameter tubes with 0.625" inner steam distributing tube.
Marlo "H" coils have tighter spacing than competitive 1" tube coils, leading to more performance in a smaller package. Multiple rows in one casing result in less piping.

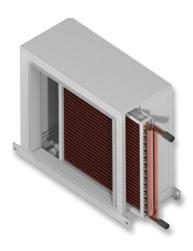
SPECIALTY PRODUCTS

Air Tight Housings

Some industrial processes require a coil to be installed in an air tight housing to allow heat transfer while preventing environmental contamination. Our housings are constructed from heavy gauge materials that are selected for suitability in their specific application. Features of our airtight coils include:

- Designed for pressures from 10" to 10 PSI (higher available)
- · Coils can be removable or permanently mounted
- Gaskets for doorplates are selected for temperature and chemical resistance
- Available with integral drain pans for condensing applications
- Transitions and flanges are available to mate housings to square or round ducts

Humidity Control Coils (HCC)


Our Humidity Control Coils are cooling coils that recirculate the warm fluid leaving the coil to heat and desaturate the air exiting the coil. This eliminates excessive moisture in the airstream and prevents damage to filters, making the HCC an ideal choice for hospitals and other critical environments that use expensive HEPA and ULPA filters. Other advantages include:

- Much more cost effective than the traditional solution of using both a cooling coil and separate heating coil
- Use of a common frame and single inlet and outlet greatly reduce complexities and installation costs
- Re-heat circuits on the air exit side of the coil reduce humidity and minimize carryover
- Intermediate drain pans, compliant with indoor air quality standards, further eliminate condensate management problems

Removable Coil Modules (RCM)

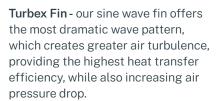
Our Removable Coil Module is a direct replacement coil section for existing air-handling units. The RCM can simplify coil replacement while adding new coil supports and a stainless steel drain pan to existing units. RCMs are available in custom sizes ranging from approximately 2-60 square feet of coil face area. Features include:

- Galvanized or stainless steel cabinets, optional painted exterior
- Custom heating or cooling coils, including steam and water coil combinations
- Integrated lifting lugs
- · Full-length stainless steel drain pan with IAQ slope
- · Coils removable from either side of cabinet
- · Single or double wall construction
- · Choice or 1" or 2" insulation
- Optional integrated filter section

Split Core Coils

Our split core coil is an optional feature that allows nearly any coil we manufacture to be divided into smaller sections to ease installation in limited space applications. The coil is split in the core area with divider plates and re-assembled on-site for a permanent installation. Features of the split core coil design:

- Allows direct replacement of long-finned length coils with minimal performance loss
- · A coil can be divided into several sections if required
- Existing AHU or ducts can be used with little or no modifications
- Existing piping can be used without modification in most cases
- · Coil core is leak tested at the factory prior to shipment
- A unique sealant is used to seal the assembled coil without plugging tubes


OUALITY CONSTRUCTION MEANS LONGER COIL LIFE

At Marlo, we design and build our coils to deliver years of reliable performance, while also providing maximum heat transfer. We select only top-quality materials—typically in heavier gauges than our competitors—and use design and manufacturing techniques that are proven to increase coil life. Some of the ways we build quality and performance into our products are highlighted below.

Choice of Fin Options

We offer three fin styles, most available in either copper or aluminum, to meet the needs of each application:

Flat Fin - a flat fin surface minimizes air turbulence, resulting in the lowest air pressure drop and a lower heat transfer capability. Flat fins are also less likely to collect debris and are easier to clean.

Marlo "M" Fin - designed with a less pronounced wave than a Turbex fin, this V-waffle fin offers a balance between high heat transfer efficiency and low air pressure drop.

Staggered Tube Design

Our multiple row coils feature staggered tubes to maximize heat transfer efficiency.

Engineered Header System

Our headers are designed to reduce the potential for leaks and provide connection locations that allow venting and draining at the highest and lowest points on the coil. We never design coils with trapped circuits, which substantially increase the risk of freeze damage. If you order a coil that includes trapped circuits, our experts will notify you and offer solutions. We also use extruded tube holes to increase surface contact for brazed joints, providing a strong bond that minimizes the potential for leaks.

Heavy Gauge Casings

Heavy gauge galvanized or stainless steel casings are used to provide support while lifting and handling the coil. Baffling and supports can be attached using self-tapping screws or optional duct mounting holes can be added to facilitate using bolts and nuts for installation.

Tube Sheets with Extruded Holes

Our standard tube sheets feature extruded tube holes to allow thermal expansion and contraction of the tubes while preventing damage from the metal edge. Optional copper ferrules can be added for additional protection.

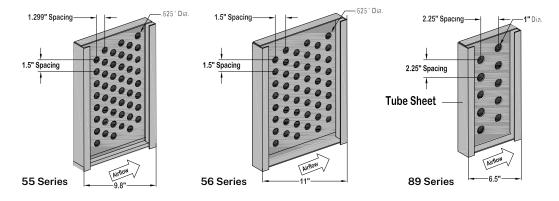
Hairpin Tubes and Return Bends

Continuous hairpin tubes offer maximum leak protection by eliminating joints within the circuit. When return bends must be used on our copper tube coils, they are sized one wall thickness heavier than the tube to provide superior erosion resistance, resulting in the longest possible coil life.

Integrated Pitched Casing

Our steam and drainable fluid coils feature a heat transfer core that is pitched within the casing to promote drainage, even when the coil is installed level.

Spun Tube Ends


Our distributing steam coils feature tube ends which are spun down to close the tube completely without adding an end disc or cap. The tip of the spun end is then brazed to eliminate the possibility of leakage.

Coil Model Nomenclature

```
8W24-96-5608T-24.3-H-1.0-R-B
Fluid
                                             8
                                                     24 - 96 - 56
                                                                      80
                                                                          T - 24.3 - H - 1 - R - B
Coils
                                                                      (f) (g) - (h) - (i) - (j) - (k) - (l)
                 Typical Model Numbers
                                                 (b) (c) - (d) - (e)
                                            (a)
                                                                  \downarrow
Steam
                2D16-60-5610F-10.2-H-B
Coils
                                                 D 16 - 60 - 56 10
                                                                           F - 10.2 - H
```

Description	Coil Types				
(a) Rows in Direction of Airflow	W	Water			
(b) Coil Type	Е	Evaporator			
(c) Number of Tubes High in Face of Coil	Р	Pitched & drainable			
(d) Finned Length	J, X, K	Cleanable plug			
(e) Tube O.D.: 55 = Tube O.D. and Spacing (55, 56 or 89)	Q, Y, R	Removable box header			
(f) Fin Spacing In Fins Per Inch	Α	Ammonia coil			
(g) Fin Style: T (Turbex), F (Flat) or M (V-waffle)	С	Condenser coil			
(h) Face Area of Coil (sq ft)	D	5/8" tube distributing steam			
(i) Airflow Direction: H (horiz) or V (vert)	Н	0" tube distributing steam			
(j) Serpentine (Circuit)	S	5/8" tube blast steam			
(k) Coil Hand: R (Right) or L (Left)	V	1.0" tube blast steam			
(I) Joint construction: B (Brazed) or W (Welded)					

Other Materials

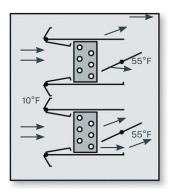
Material	5/8" or 1" O.D. Tubes Tube Wall (in.)	Headers	Casing
Copper	.025", .028", .035", .049", .065"	Types M, K & L tubing	0.125"
Aluminum	.049", .065", .083"	Sch. 40, 80	.063" to .125"
90/10 or 70/30 Copper/Nickel	.035", .049", .065"	Sch. 40, Class 200	-
Admiralty Brass	.035", .049", .065"	Sch. 40, 80	-
Carbon Steel	.035", .049", .065"	Sch. 40, 80 or 10 GA.	16 to 10 GA.*
304 & 316 Stainless Steel	.035", .049", .065"	Sch. 40, 80 or 10 GA.	16 to 10 GA.
AL6XN, Red Brass, Carpenter 20, Incoloy, Hastelloy, Monel, SM0254, Titanium or many other special materials	Contact Factory		

^{*} Steel casing material is galvanized unless otherwise specified

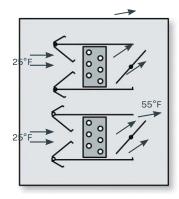
Coil Hand is determined by position of outlet connection when facing entering air side.

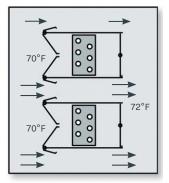
THE MARLO STRATOMIZER®

Our Stratomizer Dampered Face and Bypass Coil –also known as an Integral Face and Bypass Coil (IFB) – provides the most reliable method of preheating and tempering fresh outside air, while maintaining full steam pressure or constant hot water flow to the coil at all times.


Ideal for climates where temperatures can fall below or near freezing, the Stratomizer offers protection against freezing, constant airflow and more accurate temperature control. They can be added to air handling units to pre-heat the air entering the unit, or can be used to heat make-up air entering a building.

How it Works


The Stratomizer consists of multiple heating coils, each featuring specially designed damper blades which open and close in virtually limitless positions to precisely mix the cold bypass air with the air heated by the coils (see examples below). The positioning of the damper blades is controlled by temperature sensors in the downstream air, allowing the preset discharge air temperature to be maintained, despite variations in the inlet air temperature.


Every Stratomizer is custom built to order, so we can match the form and function of IFB coils from any other manufacturer.

When entering air temperature conditions require maximum heating, the dampers fully open and the upstream dampers direct all the entering air through the heating coil face.

As the entering air temperature increases, the dampers are automatically repositioned, proportioning the correct amount of entering air through both the heating coil faces and bypasses.

When no heating is required, the dampers are closed and the upstream dampers direct all the entering air through the bypasses. The rear dampers enclose the heating cores minimizing temperature override.

Features

- · Vertical or horizontal tube orientation
- 14-gauge galvanized or stainless steel casing
- 16-gauge galvanized or stainless steel integral bypass baffles
- · Optional epoxy-painted casing or phenolic coatings
- Downstream actuator mounting available for reduced width/height
- · Optional connection locations to simplify piping
- · Extruded anodized aluminum damper blades

- · Integral EPDM blade edge seals silicone optional
- "D" shaped damper shafts for positive torque without slipping
- Stainless steel primary drive shafts
- Oil-impregnated bronze bearings
- · Non-ferrous damper linkage out of the air stream
- · Distributing steam design on horizontal models
- Floating header design
- Three-year warranty

Blades

Extruded anodized aluminum damper blades with integral edge seals and "D"-shaped damper shafts to prevent slipping.

Casing

14-gauge galvanized or stainless steel casing with 16-gauge integral bypass baffles.

Stratomizer Model Number Nomenclature

Typical Model: K72-56-2-10-T-R-0

Nomenclature: K 72-56-2-10-T-R-0

Description

(a) Model designation (A-F = Horizontal, G-N = Vertical orientation)

(b) Finned length

(c) Tube o.d.: 56 = 5/8", 89=1.0"

(d) Number of rows in direction of airflow

(e) Fin Spacing in Fins Per Inch

(f) Fin Style-T or F (Turbex or Flat)

(g) Coil Hand-R or L-Right or Left

(h) Serpentine (Circuit): 0 = Steam, .333, .375, .750, 1.00, 1.5 = Water

Linkage

Stainless steel and non-ferrous linkage located out of the air stream.

Heating Core

Plate fins provide excellent heat transfer while offering simple cleaning.

Controls

Pneumatic or electrical proportional actuators, including direct drive options.

Floating Header

Vertical Stratomizers feature a floating header assembly designed to allow for thermal movement.

Horizontal Stratomizer

NOMINAL FIN LENGTH		29	35	41	47	53	59	72	84	96	120	
			WIDTH (INCHES)									
			42	48	54	60	66	72	85 3/8	97 3/8	109 3/8	133 3/8
UNIT DESIGNATION	FACE SECTIONS	HEIGHT (INCHES)	OUTLET AREA (ET²) NOM. WEIGHT (LBS)									
DESIGNATION	SECTIONS	(INCITES)	4.57	5.53	6.49	7.45	8.41	9.36	11.50	13.42	15.33	19.17
A	3	27.00	260	275	315	355	395	435	475	510	550	630
	B 4	35.38		7.54	<u>8.85</u>	10.16	11.47	12.77	15.69	18.30	20.92	26.15
В				330	375	420	470	515	560	605	650	740
_	C 5 43.75	42.75		9.56	11.21	12.87	14.53	16.18	19.88	23.19	26.50	33.13
		43./5		385	440	490	545	595	645	700	750	855
D		52.12		11.57	13.58	15.58	17.59	19.59	24.06	28.07	32.08	40.10
D 6	52.13		445	500	560	620	675	735	790	850	965	
	7	60.50		13.59	15.94	18.29	20.65	23.00	28.25	32.96	37.67	47.08
E	′ (60.50	60.50	500	565	630	690	755	820	885	950	1080
F	8	68.88		15.60	18.30	21.01	23.71	26.41	32.44	37.84	43.25	54.06
	Ů	00.00		555	625	695	765	840	910	980	1050	1190

Vertical Stratomizer

NOMINAL FIN LENGTH		35	41	47	53	59	72	84	96	108		
			HEIGHT (INCHES)									
			49.63	55.63	61.63	67.63	73.63	87.00	99.00	111.00	123.00	
UNIT DESIGNATION	FACE SECTIONS	WIDTH (INCHES)	OUTLET AREA (FT²) NOM, WEIGHT (LBS)									
6	G 4 35.88	35.88	7.66	8,99	10.32	11.65	12.98	15.94	18.89			
		33,00	305	340	375	415	450	485	520			
Н 6	52.63	11.69	13.72	15.74	17.77	19.80	24.31	28.36	32.42			
		425	475	525	575	625	675	730	785			
,	J 8	69.38	15.72	18.44	21.17	23.89	26.62	32.69	38.14	43.58	49.03	
,			540	605	670	740	805	870	935	1000	1065	
V	K 10	86.13	19.75	23.17	26.59	30.01	33.43	41.06	47.91	54.75	61.59	
K			660	740	820	900	985	1065	1145	1225	1305	
L 12	102.88	23.77	27.89	32.01	36.13	40.25	49.44	57.68	65.92	74.16		
		775	870	970	1065	1160	1255	1355	1455	1555		
M 14	14	14 119.63	27.80	32.62	37.44	42.26	47.07	57.81	67.45	77.08	86.72	
	14		895	1005	1115	1230	1340	1450	1560	1670	1780	
N 16	16	16 136,38	31.83	37.35	42.86	48.38	53.89	66.19	77.22	88.25	99.28	
	150.38	1010	1135	1265	1390	1515	1645	1770	1895	2020		

Subtract
6.625" for
water coils

Marlo Heat Transfer Solutions 6060 Hwy PP High Ridge MO 63049 +636 677 6600 marlo.coils@drs.com ©2023 Leonardo DRS-All rights reserved. Rev. 7-23

marlocoil.com

